目前,国内外对新的气敏材料和气体压力传感器的研究非常活跃,其主要研究和发展方向主要集中在以下几点:
首先,开发新的气敏材料。主要措施是在传统的半导体气敏材料SnO,SnO2,Fe2O3中掺杂一些元素,目前有很多这方面的研究报道;其次是研制和开发复合型和混合型半导体气敏材料和高分子气敏材料,使这些材料对不同气体具有高灵敏度、高选择性、高稳定性。
另外,开发新的气体压力传感器,应用新材料、新工艺和新技术,对气体压力传感器的机理做进一步研究,使传感器更加微型化和多功能化,并具有性能稳定、使用方便、价格低廉等特点。
同时,进一步采用计算机技术实现气体
防爆压力变送器的智能化。气体传感器和计算机技术相结合,出现了智能气体传感器-----电子鼻。国内外已成功开发了鉴别和检测食品、香料等的电子鼻。研制开发新型仿生气体传感器-----仿生电子鼻是未来气体传感器发展的主要方向。
防爆压力变送器在气体泄漏事故中的应用
检测气体种类及特性
在气体泄漏事故发生后,事故处置将围绕采样检测、确定警戒区域、组织危险区域内群众撤离、抢救中毒人员、堵漏、洗消等方面展开。进行处置的第一个方面应该是尽量减少泄漏对人员的伤害,这就要求了解泄漏气体的毒性。气体的毒性指泄漏使物质能够扰乱人们机体的正常反应,因而降低人在事故中制订对策和减轻伤害的能力。美国消防协会将物质的毒性分为以下几类:
NH=0火灾时除一般可燃物危险外,短期接触没有其它危险的物质。
NH=1短期接触可引起刺激,致人轻微伤害的物质。
NH=2高浓度或短期接触可致人暂时失去能力或残留伤害。
NH=3短期接触可致人严重的暂时或残留伤害。
NH=4短暂接触也能致人死亡或严重伤害。[ZK)>
注:以上毒性系数N/-H值只是用来表示人体受害的程度,不能用于工业卫生和环境的评价。
由于有毒气体可通过人的呼吸系统进入人体造成伤害,在处置有毒气体泄漏事故时的安全防护必须迅速完成。这就要求事故处置人员在到达事故现场后,在最短的时间内能够了解气体的种类、毒性等特性。
将气体
压力变送器阵列与计算机技术相结合,组成智能气体探测系统,能够做到迅速准确识别气体种类,从而测出气体的毒性。智能气体传感系统由气敏阵列、信号处理系统和输出系统组成。采用多个具有不同敏感特性的气敏元件组成阵列,利用神经网络模式识别技术对混合气体进行气体识别和浓度监测。同时,将常见有毒、有害、易燃气体的种类、性质、毒性输入计算机,并根据气体的性质编制事故处置预案输入计算机。当泄漏事故发生后,智能气体探测系统将按下面程序工作:
进入现场→吸附气体样品→气敏元件产生信号→计算机识别信号→计算机输出气体种类、性质、毒性及处置方案
由于气体传感器的灵敏度较高,在气体浓度很低的时候就可以进行检测,而不必深入事故现场,以避免不了解情况而造成不必要的伤害。使用计算机处理,以上过程可以迅速完成。这样,可以迅速准确地采取有效的防护措施,实施正确的处置方案,将事故损失降低到最低程度。另外,由于系统中存储常见气体的性质及处置预案等信息,如果知道泄漏事故中气体的种类,可直接在这套系统中查询气体性质和处置方案。
以上材料出自武汉松野智能仪表有限公司官网,仅供参考。